Asymmetric propagation based batch mode active learning for image retrieval
نویسندگان
چکیده
Relevance feedback is an effective approach to improve the performance of image retrieval by leveraging the labeling of human. In order to alleviate the burden of labeling, active learning method has been introduced to select the most informative samples for labeling. In this paper, we present a novel batch mode active learning scheme for informative sample selection. Inspired by the method of graph propagation, we not only take the correlation between labeled samples and unlabeled samples, but the correlation among unlabeled samples taken into account as well. Especially, considering the unbalanced distribution of samples and the personalized feedback of human we propose an asymmetric propagation scheme to unify the various criteria including uncertainty, diversity and density into batch mode active learning in relevance feedback. Extensive experiments on publicly available datasets show that the proposed method is promising. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملAn Optimization Based Framework for Dynamic Batch Mode Active Learning
Active learning techniques have gained popularity in reducing human effort to annotate data instances for inducing a classifier. When faced with large quantities of unlabeled data, such algorithms automatically select the salient and representative samples for manual annotation. Batch mode active learning schemes have been recently proposed to select a batch of data instances simultaneously, ra...
متن کاملA Scalable Graph-Based Semi-Supervised Ranking System for Content-Based Image Retrieval
The authors propose a scalable graph-based semi-supervised ranking system for image retrieval. This system exploits the synergism between relevance feedback based transductive short-term learning and semantic feature-based long-term learning to improve retrieval performance. Active learning is applied to build a dynamic feedback log to extract semantic features of images. Two-layer manifold gra...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 93 شماره
صفحات -
تاریخ انتشار 2013